Сайт преподавателя химии и биологии Коноваловой Лидии

Меню сайта
Статистика
Поделиться
Возраст сайта
Наш опрос
Как вы относитесь к вегетарианству?
Всего ответов: 2569
Главная » Файлы » Студентам » Лекции по химии

Лекция № 3 "Строение атома и периодическая система химических элементов"
[ Скачать с сервера (38.1 Kb) ] 14.08.2012, 16:30

Современные представления о строении атома

До конца XIX в. атом считали неделимой частицей, но последовавшие позже открытия (радиоактивность, фотоэффект) поколебали это убеждение. Сейчас известно, что атом состоит из элементарных частиц, основные из которых – протон, нейтрон, электрон.

Частица

Обозначение

Заряд

Относительная атомная масса

Протон

p

+

1

Нейтрон

n

0

1

Электрон

e

1/1840

После открытия основных элементарных частиц, входящих в состав атома, встал вопрос об их местонахождении, т.е. о строении атома. В 1911 г. Томсон предложил свою модель строения атома, которая получила условное название «пудинг с изюмом». Согласно этой модели атом представляет собой некую субстанцию, в которой равномерно распределены протоны, нейтроны и электроны. Число протонов равно числу электронов, поэтому атом в целом электронейтрален.

В 1913 г. Резерфорд ставит опыт, результаты которого модель Томсона объяснить не может (рис.).Это заставляет Резерфорда предложить свою модель строения атома, получившую название планетарной. Согласно этой модели атом состоит из ядра, в котором сконцентрирована основная масса атома, поскольку ядро содержит протоны и нейтроны; вокруг ядра на огромной скорости вращаются электроны. Поскольку модель Резерфорда содержала ряд противоречий, Н.Бором были введены постулаты, устраняющие эти противоречия.

 1-й постулат. Электроны вращаются вокруг ядра не по произвольным, а по строго определенным, стационарным орбитам.

2-й постулат. При движении по стационарной орбите электрон не излучает и не поглощает энергию. Изменение энергии происходит при переходе электрона с одной стационарной орбиты на другую.

Но теория Резерфорда–Бора дает удовлетворительные результаты только для атома водорода. Современные представления о строении атома подчиняются квантовой модели строения атома, которая учитывает волновые свойства элементарных частиц. Приведем ее основные положения.

• Электрон имеет двойственную (корпускулярно-волновую) природу, т.е. ведет себя и как частица, и как волна. Как частица, электрон обладает массой и зарядом; как волна, он обладает способностью к дифракции.

• Для электрона невозможно одновременно точно измерить координату и скорость.

• Электрон в атоме не движется по определенным траекториям, а может находиться в любой части околоядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Область пространства, где вероятнее всего находится электрон, называется орбиталью*.

• Ядра атомов состоят из протонов и нейтронов, имеющих общее название – нуклоны.

Параметры для характеристики атомов

Массовое число А – сумма чисел протонов и нейтронов атома.

Заряд ядра Z – число протонов, определяется по порядковому номеру элемента в таблице Д.И.Менделеева. В 1913 г. английским физиком Г.Мозли было установлено, что положительный заряд ядра атома (в условных единицах) равен порядковому номеру элемента в периодической системе Д.И.Менделеева.

Число нейтронов N определяется как разность между массовым числом и зарядом ядра (учитывая, что массой электрона можно пренебречь).

Изотопы – атомы одного элемента, имеющие одинаковый заряд ядра (следовательно, и количество электронов), но различное число нейтронов (следовательно, различные массовые числа). Например, элемент водород имеет три изотопа: протий, дейтерий и тритий. Первые два существуют в природе, тритий получен искусственным путем. Подавляющее большинство химических элементов имеет разное число природных изотопов с разным процентным содержанием каждого из них. Относительная атомная масса элемента, которая приводится в периодической системе, – это средняя величина массовых чисел природных изотопов данного элемента с учетом процентного содержания каждого из этих изотопов. Химические свойства всех изотопов одного химического элемента одинаковы. Следовательно, химические свойства элемента зависят не от атомной массы, а от заряда ядра.

Строение электронной оболочки атома

Атом состоит из ядра и электронной оболочки. Электронная оболочка атома – это совокупность всех электронов в данном атоме. От строения электронной оболочки атома напрямую зависят химические свойства данного химического элемента. Согласно квантовой теории каждый электрон в атоме занимает определенную орбиталь и образует электронное облако, которое является совокупностью различных положений быстро движущегося электрона.

Для характеристики орбиталей и электронов используют квантовые числа.

Главное квантовое число n характеризует энергию и размеры орбитали и электронного облака, принимает значения целых чисел – от 1 до бесконечности (n = 1, 2, 3, 4, 5, 6…). Орбитали, имеющие одинаковые значения n, близки между собой по энергии и по размерам, они образуют один энергетический уровень.

Энергетический уровень – это совокупность орбиталей, имеющих одинаковое значение главного квантового числа. Энергетические уровни обозначают либо цифрами, либо большими буквами латинского алфавита (1 – K, 2 – L, 3 – M, 4 – N, 5 – O, 6 – P, 7 – Q). С увеличением порядкового номера энергия орбиталей увеличивается.

Электронный слой – это совокупность электронов, находящихся на одном энергетическом уровне.

На одном энергетическом уровне могут находиться электронные облака, имеющие различные геометрические формы.

Побочное (орбитальное) квантовое число характеризует формы орбиталей и облаков, принимает значения целых чисел от 0 до – 1.

Энергетический
уровень

Значения главного
квантового числа n

Значения побочного
квантового числа l

K

1

0 (s)

L

2

0, 1 (s, p)

M

3

0, 1, 2 (s, p, d)

N

4

0, 1, 2, 3 (s, p, d, f)

Орбитали, для которых l = 0, имеют форму сферы и называются s-орбиталями. Они содержатся на всех энергетических уровнях, причем на К-уровне есть только s-орбиталь.

Орбитали, для которых l = 1, имеют форму вытянутой восьмерки и называются р-орбиталями. Они содержатся на всех энергетических уровнях, кроме первого (К).

Орбитали, для которых l = 2, называются d-орбиталями. Их заполнение электронами начинается с третьего энергетического уровня.

Заполнение f-орбиталей, для которых l = 3, начинается с четвертого энергетического уровня.

Энергия орбиталей, находящихся на одном энергетическом уровне, но имеющих разную форму, неодинакова: Es < Ep < Ed < Ef, поэтому на одном уровне выделяют разные энергетические подуровни.

Энергетический подуровень – это совокупность орбиталей, которые находятся на одном энергетическом уровне и имеют одинаковую форму. Орбитали одного подуровня имеют одинаковые значения главного и побочного квантовых чисел, но отличаются направлением (ориентацией) в пространстве.

Магнитное квантовое число ml характеризует ориентацию орбиталей (электронных облаков) в пространстве и принимает значения целых чисел от –l через 0 до +l. Число значений mlопределяет число орбиталей на подуровне, например:

s-подуровень: l = 0, ml = 0 – одна орбиталь;

p-подуровень: l = 1, ml = –1, 0, +1 – три орбитали;

d-подуровень: l = 2, ml = –2, –1, 0, +1, +2 – пять орбиталей.

Таким образом, число орбиталей на подуровне равно 2l + 1. Общее число орбиталей на одном энергетическом уровне – n2. Общее число электронов на одном энергетическом уровне – 2n2. Графически любая орбиталь изображается в виде клетки (квантовой ячейки).

Итак, каждая орбиталь и электрон, находящийся на этой орбитали, характеризуются тремя квантовыми числами: главным, побочным и магнитным. Электрон характеризуется еще одним квантовым числом – спином.

Спиновое квантовое число ms, спин (от англ. spin – кружение, вращение) – характеризует вращение электрона вокруг своей оси и принимает только два значения: +1/2 и –1/2. Электрон со спином +1/2 условно изображают так: Описание: http://him.1september.ru/2006/03/sverh.gif; со спином –1/2: Описание: http://him.1september.ru/2006/03/svniz.gif.

Заполнение электронной оболочки атома подчиняется следующим законам.

П р и н ц и п П а у л и. В атоме не может быть двух электронов с одинаковым набором всех четырех квантовых чисел.

П р и н ц и п н а и м е н ь ш е й э н е р г и и. Основное (устойчивое) состояние атома характеризуется минимальной энергией. Поэтому электроны заполняют орбитали в порядке увеличения их энергии.

П р а в и л о К л е ч к о в с к о г о. Электроны заполняют энергетические подуровни в порядке увеличения их энергии. Этот порядок определяется значением суммы главного и побочного квантовых чисел (n + l): 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d.

П р а в и л о Г у н д а. На одном подуровне электроны располагаются так, чтобы абсолютное значение суммы спиновых квантовых чисел (суммарного спина) было максимальным. Это соответствует устойчивому состоянию атома.

Например, электронные формулы магния, железа и теллура имеют вид:

Mg(+12) 1s22s22p63s2;

Fe(+26) 1s22s22p63s23p64s23d6;

Te(+52) 1s22s22p63s23p64s23d104p65s24d105p4.

Исключения в четвертом периоде составляют атомы хрома и меди, в которых происходит проскок (переход) одного электрона с 4s-подуровня на 3d-подуровень, что объясняется большой устойчивостью образующихся при этом электронных конфигураций 3d5 и 3d10. Таким образом, электронные формулы атомов хрома и меди имеют вид:

Cr(+24) 1s22s22p63s23p64s13d5;

Cu(+29) 1s22s22p63s23p64s13d10.

Для характеристики электронного строения атома можно использовать схемы электронного строения, электронные и электронно-графические формулы, например: 

Периодический закон и система химических элементов Д.И.Менделеева

1 марта (по новому стилю) 1869 г. считается датой открытия одного из важнейших законов химии – периодического закона. В середине XIX в. было известно 63 химических элемента, и возникла потребность в их классификации. Попытки такой классификации предпринимали многие ученые (У.Одлинг и Дж.А.Р.Ньюлендс, Ж.Б.А.Дюма и А.Э.Шанкуртуа, И.В.Деберейнер и Л.Ю.Мейер), но лишь Д.И.Менделееву удалось увидеть определенную закономерность, расположив элементы в порядке возрастания их атомных масс. Эта закономерность имеет периодический характер, поэтому Менделеев сформулировал открытый им закон следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомной массы элемента.

В системе химических элементов, предложенной Менделеевым, был ряд противоречий, которые сам автор периодического закона устранить не смог (аргон–калий, теллур–йод, кобальт–никель). Лишь в начале XX в., после открытия строения атома, был объяснен физический смысл периодического закона и появилась его современная формулировка: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Такую формулировку подтверждает и наличие изотопов, химические свойства которых одинаковы, хотя атомные массы различны.

Периодический закон – один из основных законов природы и важнейший закон химии. С открытия этого закона начинается современный этап развития химической науки. Хотя физический смысл периодического закона стал понятен только после создания теории строения атома, сама эта теория развивалась на основе периодического закона и системы химических элементов. Закон помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Сам Менделеев предсказал существование 12 элементов, которые в то время еще не были открыты, и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал, и при жизни ученого эти элементы были открыты («экабор» – галлий, «экаалюминий» – скандий, «экасилиций» – германий). Кроме того, периодический закон имеет большое философское значение, подтверждая наиболее общие законы развития природы.

Графическим отражением периодического закона является периодическая система химических элементов Менделеева. Существует несколько форм периодической системы (короткая, длинная, лестничная (предложена Н.Бором), спиралеобразная). В России наибольшее распространение получила короткая форма. Современная периодическая система содержит 110 открытых на сегодняшний день химических элементов, каждый из которых занимает определенное место, имеет свой порядковый номер и название. В таблице выделяют горизонтальные ряды – периоды (1–3 – малые, состоят из одного ряда; 4–6 – большие, состоят из двух рядов; 7-й период – незавершенный). Кроме периодов выделяют вертикальные ряды – группы, каждая из которых подразделяется на две подгруппы (главную – а и побочную – б). Побочные подгруппы содержат элементы только больших периодов, все они проявляют металлические свойства. Элементы одной подгруппы имеют одинаковое строение внешних электронных оболочек, что обусловливает их схожие химические свойства.

Период – это последовательность элементов (от щелочного металла до инертного газа), атомы которых имеют одинаковое число энергетических уровней, равное номеру периода.

Главная подгруппа – это вертикальный ряд элементов, атомы которых имеют одинаковое число электронов на внешнем энергетическом уровне. Это число равно номеру группы (кроме водорода и гелия).

Все элементы в периодической системе разделяются на 4 электронных семейства (s-, p-, d-,
f-элементы) в зависимости от того, какой подуровень в атоме элемента заполняется последним.

Побочная подгруппа – это вертикальный ряд d-элементов, имеющих одинаковое суммарное число электронов на d-подуровне предвнешнего слоя и s-подуровне внешнего слоя. Это число обычно равно номеру группы.

Важнейшими свойствами химических элементов являются металличность и неметалличность.

Металличность – это способность атомов химического элемента отдавать электроны. Количественной характеристикой металличности является энергия ионизации.

Энергия ионизации атома – это количество энергии, которое необходимо для отрыва электрона от атома элемента, т. е. для превращения атома в катион. Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.

Неметалличность – это способность атомов химического элемента присоединять электроны. Количественной характеристикой неметалличности является сродство к электрону.

Сродство к электрону – это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в анион. Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.

Универсальной характеристикой металличности и неметалличности является электроотрицательность (ЭО) элемента.

ЭО элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.

Чем больше металличность, тем меньше ЭО.

Чем больше неметалличность, тем больше ЭО.

При определении значений относительной ЭО по шкале Полинга за единицу принята ЭО атома лития (ЭО(Li) = 1); самым электроотрицательным элементом является фтор (ЭО(F) = 4).

В малых периодах от щелочного металла к инертному газу:

• заряд ядер атомов увеличивается;

• число энергетических уровней не изменяется;

• число электронов на внешнем уровне увеличивается от 1 до 8;

• радиус атомов уменьшается;

• прочность связи электронов внешнего слоя с ядром увеличивается;

• энергия ионизации увеличивается;

• сродство к электрону увеличивается;

• ЭО увеличивается;

• металличность элементов уменьшается;

• неметалличность элементов увеличивается.

Все d-элементы данного периода похожи по своим свойствам – все они являются металлами, имеют мало различающиеся радиусы атомов и значения ЭО, поскольку содержат одинаковое число электронов на внешнем уровне (например, в 4-м периоде – кроме Cr и Cu).

В главных подгруппах сверху вниз:

•  число энергетических уровней в атоме увеличивается;

• число электронов на внешнем уровне одинаково;

• радиус атомов увеличивается;

• прочность связи электронов внешнего уровня с ядром уменьшается;

• энергия ионизации уменьшается;

• сродство к электрону уменьшается;

• ЭО уменьшается;

•  металличность элементов увеличивается;

•  неметалличность элементов уменьшается.

Категория: Лекции по химии | Добавил: Lida | Теги: лекции для студентов
Просмотров: 35960 | Загрузок: 1207 | Рейтинг: 3.8/8
Всего комментариев: 0
Имя *:
Email *:
Код *:
Поиск
Календарь
Разделы каталога
Алгоритмы и тренажёры [20]
Лекции по химии [27]
Рекомендации и памятки [8]
Самостоятельная работа [17]
Лекции по биологии [16]
Видеоуроки [16]
Объявление
Репетитор по химии. Решаю задачи по химии и биологии. Обращайтесь через электронную почту lidijav09@rambler.ru
Кнопка сайта
Обменяемся кнопками?

Copyright MyCorp © 2024
Бесплатный хостинг uCoz